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Simulating recovery from bilingual aphasia. 
Paul Meara 

This  paper  describes  some  work  that  I  and  my  colleague  Alison  Wray  have  been  doing  on 
descriptive models of bilingual lexicons.  This work  is  rather  different  from  the  mainstream 
work  that has appeared in this area over the last  few  years  -  eg.  de  Bot's adaptation  of  Levelt's 
model,  or  the work of de Groot and her colleagues (de Bot 1992; Levelt 1989; de Groot 1995). 
Indeed,  our work  is in many ways a deliberate reaction against the complexity of these models. 
Although the approaches we have mentioned  differ in  their  details,  they  all  share  a  set  of 
common  working assumptions. These assumptions are, basically, that "lexicons" can be shown to 
produce characteristic behaviour  patterns,  and  that these  behaviour  patterns  can  be  explained 
by devising formal models of how the lexicon is structured. If the model  we  develop predicts 
behaviours which actually occur, then it is taken to be a good model. There is, of course, nothing 
wrong with this approach. Indeed,  some  of  the  more recent models of this type seem to be 
extraordinarily  accurate  (eg.  Dijkstra  and  de  Smedt   1996). Nonetheless,  it  is difficult to avoid 
the feeling that this high level of success has been bought at  some  cost:  not  even  their strongest 
supporters  would describe current models of the mental lexicon as simple.

This has made us wonder whether it might be interesting to explore the properties  of   very   much 
simpler  models  of  lexical organisation.  Our  strategy  in  this  work  has  been  to  build non-
complex  models  -  models  which  are not designed to explain particular pre-conceived problems 
- and to  test  what  properties emerge  spontaneously  from  them.   That is, instead of designing 
models of  the  lexicon  so  that  they   must   produce  a  set  of predetermined desired behaviour 
patterns, we work with very simple models, examine their properties, and see if these properties 
have any  analogues  with  the  behaviour  patterns  produced  by  real lexicons.

The models that I  am going to describe in this paper are so simple that many readers will be 
surprised that they can have any bearing at all on the a question as complex as the  organisation  of 
real  mental   lexicons.  As  we  shall  see,  however,  some  surprising  things  can  emerge  from 
beginnings that look decidedly unpromising.

Our model lexicons belong to a set of cellular automata  known  as k=2  random boolean networks 
(Kauffman 1991; 1993). Stripping away the jargon, this means that our "lexicons" consist  of  a  set 
of units  which it is convenient to think of as words. Each "word" is connected randomly to two 
other words in the system. Each word can be in one of two states, ON or OFF. We usually think of 
an ON word as one which is currently  active  or  available  for  production, while an OFF word is 
a  passive  vocabulary  item,  available  for production  only  if   it  is  turned ON by external 
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stimulation. The current state of each word depends on the state of the  two  words that  it  is 
directly connected to. In the models described here, words turn ON or OFF according to a set of 
simple  Boolean  rules. Some words turn ON if  both of their connections are ON, while some 
words  turn  ON  if one or both of their connections are ON. These processes are described in more 
detail in figure 1.  The  important points  to note are that the interconnections between the words 
in these models are both sparse and random.  Only a bare  minimum  of structure  has  been  built 
into  the  models -  just  enough  to distinguish  them  from unstructured lists of words. (See 
Appendix one for a more detailed description of random Boolean networks).

In an earlier paper (Meara 1996) I showed that randomly  organised minimal  networks  of this 
kind had some odd properties which were reminiscent of some  of  the  behaviours  that  we  find 
in  real lexicons.  In  particular, the randomised networks seem to provide fairly natural accounts 
of the way words in  real  lexicons  shift between  active  and  receptive  states. There is,  for 
example, no need to set up a separate mechanism to account for the "passive to active shift" in 
these  models;  the  distinction  between  active productive  and  receptive  passive  vocabulary 
just emerges as a property of  the  way  these  networks  function.  Similarly,  the network model 
provides a possible explanation for some odd data on lexical  attrition  (Grendel 1993; Weltens and 
Grendel 1993): once established, Boolean networks are remarkably stable, and up  to  a point they 
can repair themselves.

It is  also  possible  to  design  "bilingual"  networks.  In  our simulations,  a  bilingual  network is 
constructed by building two separate, independent networks. We then alter a small fraction  of the 
random  connections so that some words have one same-language random connection, and one 
cross-language  connection.  Like  the monolingual  models,  these  bilingual  models also appear 
to have properties which mirror the behaviours of real bilingual  speakers (Meara 1996). Like the 
monolingual  networks described earlier,  our bilingual    networks  normally  stabilise   into  a 
steady  state. Typically, this steady state will favour  one  language  over  the other,  in  the  sense 
that  one language tends to have a greater number of ON units than the other one does. It  is 
convenient  to think  of  this  initially  dominant  language  as the L1, and the weaker language as 
the L2.  This stable state state can be  easily disturbed,  however.  If  the  weaker  language  is 
stimulated  by  randomly  turning  words  ON,  then  the  entire  network   can   sometimes  move 
rapidly  towards a new equilibrium state. When this happens, large numbers of L1 words become 
inactive,  and large numbers of  L2 items become active,  so that  the L2  system  as   a   whole 
becomes quickly  dominant.  This pattern of dominance holds as long as the external stimulation is 
maintained.  Once  it  stops,  the  system rapidly  returns to its stable resting configuration, in 
which the L1 dominates.  This sort of property  looks  suspiciously  like  a mechanism  that  would 
allow bilingual lexicons to switch rapidly between the languages that made them up. We were also 
able to show that a randomised model involving three languages  often  produced L3  interference 
when the L2 was stimulated - a phenomenon that is commonly  experienced  by trilingual people 
operating in their L2, but not easily explained by the current models.

In  this  paper,  I  want  to  describe our attempts to model some  aspects of bilingual aphasia using 
random  boolean  networks.  Our original  intention had been to attempt to construct networks 
that were direct analogues of some of the cases described in Albert and Obler's book (Albert and 
Obler 1978). A&O's chapter 4  contains  a set  of  108 case studies, described in some detail, and I 
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thought that it might be possible to develop network models that  mimicked some  of  the  gross 
features  of a few of these cases. Modelling specific cases may seem like an ambitious  goal:  it  is 
obvious, however,   that   random   networks   are  an  extremely  powerful descriptive device, and 
in principle, it ought to be  possible  to engineer  a  network  so  that  it  displayed  a  set  of 
desired characteristics. We have, in fact  been  exploring  this  type  of problem using a genetic 
algorithm approach.  In practice, however, modelling  A&O's cases turned out to be more difficult 
than we had anticipated. The  main  reason  for  this  was  not  that  it  was difficult  to  engineer 
the  networks,  however.  Rather  the  problem   was  that  the  case  studies  found  in  A&O  were 
described too  loosely for our purposes. In most of the descriptions, for instance, it is hard  to  tell 
how long it took for the recovery to occur, and the nature of  the  remaining  deficits  is  similarly 
vague.   These problems  -  which  are by no means confined to A&O's work – meant that it was 
difficult to specify what our models were required  to do. Another, different approach was clearly 
necessary.

I mentioned earlier that  random  bilingual  networks  allowed  to stabilise  typically settle down 
into a state where one of the two languages dominates the  other  -  the  dominant  language  has  a 
greater number of ON items than the non-dominant language does. We can  use  the number of 
ON units in each of the two languages as a simple shorthand measure of the  current  state  of  the 
network. Using  this  metric  then suggests an obvious way of exploring the behaviour of bilingual 
networks under stress: we can  "traumatise" a  network  by  making sudden, large changes its the 
current state description, and we can then explore how the  network  copes  with this.   One  of the 
easiest  ways  of  traumatising  a  network  in  this  way  is  simply  to  turn  OFF  all  the  words 
simultaneously.  Left  to itself,   a  network  in  this  state  will stay there: there is no internal  
stimulation in the network which would cause it  to  move to  a  new  state.   However,  if  we 
"kick-start" the network, by turning on a small number  of  words  at  random,  this  is  often 
sufficient  to  set the network back on the road to recovery. What we are interested in, in this 
paper,   is   whether   anything  like "patterns  of  recovery"  can be  found in the  way networks 
respond to this treatment.

In  order  to  examine  this  question,  I   ran  a  set of some 25 simulations. Each simulation 
consisted   of   the   following  steps.  First,  a  random network  was  initialised  and allowed to 
stablilise. Each  network  consisted  of two sets of 80 "words". Each word was connected randomly 
to two other same-set words, with the exception that 10% of the units had one link to both sets  of  
words.  These cross  language units are Boolean EOR units - they go ON if one or other of their 
input units is ON, but not  if  both  are  ON.  All other  units  were randomly set as AND units - 
these go ON if both their inputs are ON - or OR units - these units go on if either or both  of  their 
input  words  is  ON.  Next,  the   network   was "traumatised",  by  having  ALL  of its words set to 
OFF. Finally, four randomly chosen  units  in  one  of  the  two  languages  were switched ON, and 
the network was left to stabilise. 

We  can  observe  the  process  of  recovery  in these networks by counting the number of words 
which are in the  ON  state  at  each cycle  of  the  stabilisation  process. This  is  something  of  a 
simplification,  of  course; there is a lot more going on in these networks  than  this data implies, 
but the number of ON items is a useful shorthand at this stage. Some data of this  kind  has  been 
reproduced in figures 1 to 7.
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Figure 1

Figure 2
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Figure 3

Figure 4
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Figure 5

Figure 6
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Figure 7

The  main  thing  to  note  about this data is that several of the recovery patterns appear to be 
relatively "well-behaved". From the initial kick-start, both languages  appear  to  recover  well.  In 
figure  1, for instance, we have a network in which both languages move quickly to their initial 
equilibrium  level.   L1  appears  to recover  slightly more rapidly than L2, and but L2 largely 
follows the same recovery pattern as L1.  In figure 2,  both languages  also reach  their   initial 
equilibrium level, although in this case L2 appears to take rather longer to recover than L1 does. 
Figure 3 is also "well-behaved" in that both languages fare equally badly.  In this  case,  neither 
language  gets  beyond  a  minimal  level of recovery. Figure 4 shows a system which does not 
return  completely  to  its  original  equilibrium level.  L1   appears   to   recover   quite  well,   but 
eventually settles into a pattern of activity which is slightly lower than the original equilibrium 
level.  L2,  on  the other  hand  shows only a minimal level of recovery. The remaining figures 
show somewhat  less  well-behaved  patterns  of  recovery. Figure  5  shows  a case where the first 
language to show signs of recovery is the L2.  This  early  promise  fails  to  materialise, however: 
L1  begins  to recover slowly, and eventually reaches an equilibrium level not far short of the 
original level. L2  appears to do nothing until the L1 is almost completely re-established, but it 
manages   to   reach   a   low-level  equilibrium  after  the stabilisation of L1. Figure 6 shows 
another case where L2  appears to recover before L1. This recovery, though fairly slow, continues 
until  L2  reaches  its original equilibrium level. Meanwhile, L1, which appears not to be recovering 
at all in the early  stages  of the  stimulation,  suddenly  begins  to  recover very rapidly, and 
quickly comes to reassert its dominance again. The most intriguing recovery pattern is figure 7. In 
this simulation, we seem to  have an  oscillating  pattern  of  recovery  in which the two languages 
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appear to take turns in dominance. L2  appears  to  be  recovering quickly  at  first,  but  the  rate of 
recovery slows after the L1 items start to become active. Meanwhile, the recovery pattern  for L1  is 
markedly  different:  a  period  of  rapid  recovery being followed by periods of substantial loss, 
which allows  the  L2  to re-establish temporary dominance.

What does all this mean? It would be very easy to suggest that the patterns of recovery shown in 
figures 1 to 7 are direct  analogues of  cases  reported in the clinical literature. Paradis (1977) for 
instance, in a large-scale review of case studies, identified five principal patterns of recovery in 
bilingual aphasia.   These  were  Parallel   Synergistic   Recovery, where both languages recover at 
roughly the same rate;  Differential  Synergistic  Recovery,  where both  languages recover, but one 
language recovers faster than the other;  Antagonistic Recovery,  where recovery  in  one  language 
is achieved  at  the expense of the other;  Successive Recovery, where one language recovers fully 
before any recovery occurs in the other language; and  Selective Recovery, where a patient fails to 
regain  one of his languages at all.

All five recovery patterns are present in the simulations reported here.  Figure  1,  for instance, 
looks like a case of complete and parallel recovery.   Figure  2  looks  like  a  case  of  complete 
recovery for  L1,  but  delayed recovery for  L2.   Figure  3 looks like a  case of  permanent  non-
recovery.  Figure  4  looks  like  a  case  of  near-total  recovery  for  L1,  and  severe  permanent 
impairment  for L2. Figure 5 looks like a case of very slow recovery in L1. Figure 6  looks  like  a 
case of early recovery in L2 followed by delayed but complete recovery in L1.   Figure  7  is  clearly 
a  case  of antagonistic recovery, with L1 and L2 alternating as to  which  of them  is  dominant. 
The  parallels between these simulations and some  of  the  cases   reported  in  the  clinical 
literature  are striking.  However,  it  would  clearly  be  a mistake to push the parallels too hard. 
The simulations are NOT intended to  be  real models  of real patients, and the device of using the 
number of ON units as a short-hand way of describing the state of  the  systems is clearly a crude 
simplification.

Nonetheless,  the fact that it has been possible for us to produce something that bears more  than  a 
passing  resemblance  to  what appears  in  the  clinical literature ought to give us some pause for 
thought. It is generally assumed that the  range  of  recovery patterns   shown  by  real aphasic 
patients is a reflection of the enormous complexity of the way language is organised in the  human 
brain,  and a  great  deal  of  effort  has  gone  into  trying  to  decipher  the   complexities   of   this 
organisation  by  examining  recovery patterns in detail and depth. We have, for instance, Pitre's  
Rule, which states that the  most  "familiar",  or  most  recently  used language  returns  first,  and 
Ribot's  Rule  which suggests that the first learned language should recover first, and  a  number  of 
other  plausible  attempts  to  explain  the variation in recovery patterns  found  in  real  aphasic 
patients.   Albert  and  Obler (1978:106)  summarise  despairingly,  with the suggestion that "no 
single rule can yet predict language recovery patterns in all  the individual  cases  of  prolonged 
aphasia".   The key word here is "yet", implying as it does,  that  more  case  studies,  and  more 
detailed  biodata  might  be able to show us what this single rule could be.  The importance of the 
simulations I have reported  here is  that  they  suggest  this  hope may be a vain one.  What these 
simulations show is that  complex  patterns  of  recovery  do  not necessarily  imply a complex 
underlying organisation. The recovery patterns  reported  here  were  produced  by  randomly 
organised networks,   with   minimal  interconnections,  and  barely  enough internal structure to 
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distinguish them from a mere list of  words. Nor  were  these  patterns  difficult  to  find.  The 
seven I have reported here were drawn from a batch of 25 simulation runs,  with the other runs 
producing  patterns  that  looked similar  to  these.   This  suggests  to  me that  the  range of  cases 
reported  in  some  of the  clinical  literature  may in fact be less interesting than it looks at first  
sight. If  complex  patterns  of  recovery  can  be produced  by  nothing  more  structured than a 
small-scale,  random network,  then it  is  perhaps  not  surprising to  discover   that   real  human 
aphasics,  whose lexicons are presumably a lot more complex than these random models, generate 
a very wide range  of  recovery patterns too. If this view is correct, then a very large number of 
different  recovery  patterns is precisely what we would expect to find in a large group of patients. 
New cases  do  not  necessarily add  anything  deep  to our understanding of the way languages 
can recover from trauma. They may  merely  confirm  that  language  is complex, and produces 
complex patterns of behaviour.

The  question  we  ought  to be asking is what is it about the way language is structured that 
allows  it  to  recover  from  severe trauma  at  all.  The  simulations  reported here suggest that the 
ability to recover from trauma might be an  emergent  property  of any  network structure with 
minimal organisation. The implications of this conclusion are not at all clear. However, it does 
suggest that  simulations  of  this  type, despite their crude simplifying assumptions, might be  able 
to  throw  some  light  on  why  real patients  show  such  a  large range of recovery patterns, and 
why this data has so far defied any real analysis.
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Appendix One: Random Boolean Networks.

This figure shows a very small  network  consisting  of  only  four units,  labelled A,B, C, and D. 
Each unit can either be ON or OFF. Each unit is connected to two other units, and the  current 
state of each unit is determined by the state of its two input units. In this example,

A is connected to B and C
B is connected to C and D
C is connected to D and A
D is connected to A and B

Three units (A,B and C) are EOR units: that is
A goes ON if either B or C is ON or if both B and C are ON.
B goes ON if either C or D is ON or if both C and D are ON.
C goes ON if either D or A is ON or if both D and A are ON.
The remaining unit (D) is an AND unit: that is
D goes ON only if both A and B are ON.
These values and connections are assigned at random.

When  the  network  is  initialised,  units are turned ON or OFF at random. From this initial 
starting configuration, the  pattern  of activity  in  the  network  can  be  worked out from a simple 
rule table.  In  this  case,  there are sixteen possible states, and the the following rules apply (1=ON, 
0=OFF): 

         A B C D    A B C D 
    0    0 0 0 0    0 0 0 0     0
    1    0 0 0 1    0 1 1 0     6
    2    0 0 1 0    1 1 0 0    12
    3    0 0 1 1    1 1 1 0    13
    4    0 1 0 0    1 0 0 0     8
    5    0 1 0 1    1 1 1 0    13
    6    0 1 1 0    1 1 0 0    14
    7    0 1 1 1    1 1 1 0    14
    8    1 0 0 0    0 0 1 0     2
    9    1 0 0 1    0 1 1 0     6
   10    1 0 1 0    1 1 1 0    14
   11    1 0 1 1    1 1 1 0    14
   12    1 1 0 0    1 0 1 1    11
   13    1 1 0 1    1 1 1 1    15
   14    1 1 1 0    1 1 1 1    15
   15    1 1 1 1    1 1 1 1    15
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What this table shows is that if the system starts  off  in  state number  6  (A=OFF, B=ON, C=ON, 
D=OFF),  then it will move to state 14 (A=ON, B=ON, C=ON, D=OFF). Typically, networks of this 
sort tend towards a steady  state.  In this   case,   the   network   has  two  steady  states,  state  0 
(A=OFF,B=OFF,C=OFF,D=OFF)  and  state  15   (A=ON, B=ON, C=ON, D=ON). Initialising  the 
network in any of the other states will cause it to move to to state 15. For example, initialising the 
network  in state  4  (A=OFF, B=ON, C=OFF, D=OFF)  will cause the network to move through the 
following sequence of states:

             A B C D 
state  4     0 1 0 0
state  8     1 0 0 0
state  2     0 0 1 0
state 12     1 1 0 0
state 11     1 0 1 1
state 14     1 1 1 0
state 15     1 1 1 1

State 15  is called an  Attractor. In  this  state  the  network  is stable, and resists attempts to move it 
to another state.

Larger  networks  have  more  interesting  properties than a small network of this sort. With a 
network  of  any  size,  it  becomes practically impossible  to  enumerate  all  the  possible  states. 
Typically, however,  a  randomised  network consisting of,  say,  200  units, when allowed  to 
stabilise, will reach one of its attractor states in fewer than 30 iterations. Typically, the attractors  of 
larger networks contain a significant number of OFF units.
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